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We investigate the stability characteristics for dissipative solitons solutions in three-dimensional complex 
Swift-Hohenberg(CSH) equations. The variational approach is used to gain steady state solutions of complex 
Swift-Hohenberg equations. Following numerical simulations, the quintic-loss parameter, cubic-gain coefficient, effective 
diffusion (viscosity) or angular spectral filtering have more significant effect on steady state solutions. In particular, an 
asymmetric input pulses will always give a stable dissipative spatial soliton for dissipative parameters from this domain. The 
opportunity to achieve analytically and numerically asymmetrical input pulses propagating toward necessarily stable and 
robust dissipative light bullets opens possibilities for theoretical, experimental and even diverse practical applications. 
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1. Introduction 
 
Complex Ginzburg-Landau (CGL) equations have 

drawn more and more attention in physics and applied 
mathematics communities as a class of universal models 
that are widely applied in nonlinear optics, fluid dynamics, 
Rayleigh-Bénard convection, chemical waves, 
second-order phase transitions, superconductivity, 
Bose-Einstein condensation and quantum field theories 
and so on many domains[1-3]. As a dissipative extension 
of the nonlinear Schrödinger (NLS) equation, the CGL 
equation exhibit a broad range of unique dynamical 
behaviors, ranging from chaos and pattern formation[4] to 
dissipative solitons[5]. Dissipative solitons form 
continuous families and are supported by the additional 
balance between linear or nonlinear loss and gain. 
Moreover, dissipative solitons, including dissipative gap 
solitons and localized vortices can be stable in the model 
based on two-dimensional (2D) and three-dimensional (3D) 
CGL equation with the cubic-quintic (CQ) nonlinearity 
[6,7]; for a comprehensive review and a recent topical 
issue on dissipative optical solitons[8-12]. As another 
dissipative system, the complex Swift–Hohenberg (CSH) 
equation is derived by adding the four-order diffusion term 

to the CGL model [13–15]. The CSH model takes on 
stronger friction force than the CGL model for the 
higher-order terms, which lead to some differences 
between them in optics. Especially, the CSH model also 
has been widely applied for researching various localized 
states, including the formation of complex patterns [16] 
and localized foundational patterns [17-21]. In this paper, 
we study dissipative solitons solutions in three-dimensional 
complex Swift-Hohenberg equations(CSH) by using 
variational and numerical approach. Following numerical 
simulations, the influence of the quintic-loss parameter, 
cubic-gain coefficient, effective diffusion (viscosity) or angular 
spectral filtering steady state solutions has been investigated. 
These are very helpful for understanding spatiotemporal 
solitons completely and exploring thoroughly some future 
potential applications.   

 
 
2. The model and variational approach 
 
We use the 3D-CQCGL equation to describe the 

propagation of an electromagnetic field E  in the optical 
medium. In the normalized form [22-25] 
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where  is the quintic self-defocusing coefficient,  is 
the linear loss or gain coefficient,   denotes quintic-loss 
parameter,  is the cubic-gain coefficient, and 

 accounts for effective diffusion (viscosity) or angular 
spectral filtering in the medium. The right-hand side of (1) 
contains dissipative terms Q, can be expressed by 
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where s denotes the higher-order parameter. To establish 
the variational approach for CQGLE, we construct the 
total Lagrangian of the system described by Eq. (1) and   

Eq. (2) containing a conservative and a dissipative part 
[22]. An asymmetric trial function can be expressed by 
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where the amplitude A, unequal spatial widths X ,Y and T , 
unequal wavefront curvatures C，G and S and phase  , 
all functions change with the longitudinal coordinates z 

[22]. Optimization of each of these functions gives one of 
eight Euler-Lagrange equations averaged over transverse 
coordinates 
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where LC is the conservative Lagrangian and Re denotes 
the real part [22]. Within the variational approximation, 
the partial differential CQGLE corresponds a set of eight 

coupled first-order differential equations (FODEs) 
resulting from the variations in amplitude 
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asymmetric widths 
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Anisotropic wave front curvatures 
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and phase  
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where 4745 23B , 4538R . Without higher-order 

dispersion and diffraction(s=0), the model is transformed 

into the standard CQCGL. Only symmetric steady state 

solutions, with equal widths (X=Y=T) and curvatures 

(C=S=G), can exist. To have a stable pulse background, 

the linear dissipation term has to correspond to a loss, i.e. 

the parameter δ must always be negative [12]. All 

remaining dissipative parameters are divided by 

 0
:

00   , 00   ,
00   . However, as in 

conservative systems, for small chirp, it follows from Eq. (5) 

that the width   212212   ABARBX  and the striking difference 

from conservative systems is the nonzero wave front curvature 
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The beam power XYTAP 2  is no more conserved in 

dissipative systems.Moreover, we get the equation of the 

corresponding steady state amplitude: 
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3. Results and discussion 

 

In this section, we will discuss the properties of 

dissipative solitons solutions in three-dimensional 

complex Swift-Hohenberg equations. During the 

calculations, we select the generic case for the set of 

parameters [22-25]: 01.00  , 230  , 400  and 50  . 

Unless otherwise specified, the following calculations are 

performed using the above parameters. According to the 

equations of width, wave front curvature and steady state 

amplitude, the width and wave front curvature can be 

known when the steady state amplitude strongly depends 

on quintic-loss parameter, cubic-gain coefficient, effective 

diffusion (viscosity) or angular spectral filtering. To 

evaluate the stability characteristics for dissipative solitons 

solutions, we analyze the amplitude, peak power and width 

varying with system parameters. Fig. 1 shows the steady 

state amplitude, beam power and width as a function of 

cubic-gain coefficients for different fourth-order 

diffraction and higher-order spectral filterings. When the 

higher-order parameter s is -10, the amplitudes taking on 

bifurcation curve correspond to A+ and to A- , respectively. 

The bifurcation corresponding to A+ is on the lower 

unstable branch, the bifurcation associated to A-  is on the 

upper stable branch. For a small and moderate 

higher-order parameter s(=-10),The amplitude A+ 
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decreases gradually with increase of the parameter 0 , 

and has a slight difference. However the amplitude A- is 

curved and increases gradually with increase of the 

parameter 0 , appears a point of inflexion in curve, then 

increases with increase of the parameter 0 . Moreover 

when the parameter s is increased to -20, the amplitude A- 

is curved and increases gradually with increase of the 

parameter 0 for given higher-order parameter s, appears 

a point of inflexion in curve, then increases with increase 

of the parameter 0 .As the parameter s is further 

increased to -30 and -40, the amplitude variation is the 

similar with that for the parameter -20,but its changes are 

small,as shown in Fig. 1(a). Fig.1(b) presents the 

corresponding peak powers with cubic-gain coefficients 

for different fourth-order diffraction. Obviously, the peak 

power is monotonically increasing with increase of the 

parameter 0 for the amplitude A+, it 

presents various change trends with the parameter 0 for 

the amplitude A-. When the parameter s is -10, the peak 

power decreases gradually, its variation difference is 

very small after the parameter 0 . Similarly the 

parameter s is further increased, the peak power decreases 

gradually, its variation difference is very small for the a 

high parameter 0 ,finally remains constant. Compared 

with Fig. 1 (b),the width change trends have the same to 

these of the peak power for the amplitude A+ and A-,as 

shown in Fig. 1 (c). We can make clear that solitons with 

the amplitude A- can be stable with increase of the 

parameter 0  for given fourth-order diffraction s, on the 

contrary solitons with the amplitude A+ can be unstable for 

the same parameters. 

 

 

Fig. 1. The stable steady state solutions amplitude A ,beam power P and width X with  
different cubic-gain coefficients 

 

Fig. 2 shows the steady state amplitude, beam power 

and width changing with cubic-gain coefficients for 

different fourth-order diffractions and higher-order 

spectral filterings. The amplitudes A+ and A- are on the 

lower unstable branch and on the upper stable branch 

respectively. With increase of the parameter 0 ,the initial 

amplitude A+ increase gradually and has a slight difference. 

However the amplitude A- decreases gradually, appears a 

sudden change, and decreases with increase of the 

parameter 0 for different higher-order parameters s. As 

the parameter s is -10,the amplitude A- decreases 

gradually ,then decreases suddenly with increase of the 

parameter 0 . As the parameter s is further increased to 

-20,the amplitude variation is the similar with that for the 

parameter -10,but its changes are small. As the parameter s 

is further increased to -30 and -40,the amplitude variation 

is the similar with that for the parameter -10, but its 

changes are small, as shown in Fig. 2 (a). Fig. 2 (b) 

presents the corresponding peak powers with cubic-gain 

coefficients for different fourth-order diffractions. 

Obviously, with increase of the parameter 0 , the peak 

power is monotonically increasing for the amplitude A+, it 

presents various change trends with the parameter 0 for 

the amplitude A-. When the parameter s is -10,the peak 

power decreases gradually, its variation difference is 

very small after the parameter 0 .As the parameter s is 

further increased, the peak power decreases gradually, its 

variation difference is very small after the a bigger 

parameter 0 , finally keeps constant. Compared with Fig. 

2 (b), the width change trends have the same to these of 
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the peak power for the amplitude A+ and A-, as shown in 

Fig. 2 (c). From these figures, we can see that the 

amplitude A, the corresponding peak powers and the width 

have opposite change trends with Fig. 1, solitons with the 

amplitude A- can be stable with increase of the parameter 

0  for given fourth-order diffraction, on the contrary 

solitons with the amplitude A+ can be unstable for the 

same parameters. 

 

 

 
Fig. 2. The stable steady state solutions amplitude A ,beam power P and width X  

with different quintic-loss parameters 

 

To further understand the effect of other system 

parameters on stability characteristics for dissipative 

solitons solutions in three-dimensional complex 

Swift-Hohenberg equations. Fig. 3 shows the steady state 

amplitude, beam power and width varying with cubic-gain 

coefficients for different fourth-order diffraction and 

higher-order spectral filtering. The amplitudes A+ and A- 

are on the lower unstable branch and on the upper stable 

branch respectively. With increase of the parameter 0 ,the 

amplitude A+ increase gradually and has a slight difference. 

However the amplitude A- decreases gradually with 

increase of the parameter 0 for different higher-order 

parameter s. As the parameter s is -10, the amplitude A- 

decreases gradually ,then decreases suddenly with increase 

of the parameter 0 . As the parameter s is further 

increased to -20, the amplitude variation is the similar with 

that for the parameter -10, but its changes are much 

smaller. As the parameter s is further increased to -30 and 

-40,the amplitude variation is the similar with that for the 

parameter -10,but its changes are small, as shown in Fig. 3 

(a). Fig. 3 (b) presents the corresponding peak powers with 

cubic-gain coefficients for different fourth-order 

diffraction. We can make clear that the peak power is 

monotonically increasing with increase of the 

parameter 0 for the amplitude A-, it 

presents various change trends with the parameter 0 for 

the amplitude A+. When the parameter s is -10, the peak 

power decreases gradually, its variation difference is 

very small after the parameter 0 .Similarly the parameter 

s is further increased, the peak power decreases gradually, 

its variation difference is very small for a bigger 

parameter 0 , finally remains constant. Compared with 

Fig. 3 (b), the width change trends have the same to these 

of the peak power for the amplitude A+ and A-,as shown in 

Fig. 3 (c). As the parameter s is -10, the amplitude A- 

decreases gradually ,then decreases suddenly with increase 

of the parameter 0 ,as shown in Fig. 3 (d). Fig. 3 (e) 

presents the corresponding peak powers with cubic-gain 

coefficients for different fourth-order diffraction. The peak 

power is monotonically increasing with increase of the 

parameter 0 for the amplitude A-,it 

presents various change trends with the parameter 0 for 

the amplitude A+. When the parameter s is -10, the peak 

power decreases gradually, its variation difference is 

very small after the parameter 0 . Similarly the parameter 

s is further increased, the peak power decreases gradually, 

its variation difference is very small after the a bigger 

parameter 0 , finally keeps unchanged. Compared with 

Fig. 3 (e), the width change trends have the same to these 

of the peak power for the amplitude A+ and A-, as shown 

in Fig. 3 (f). We find that the the amplitude, peak powers 

and width change trends become narrower and narrower 
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with increase of the parameter 0 , the effective diffusion 

(viscosity) or angular spectral filtering in medium is 

unfavorable for the stable solitons in dissipative solitons 

solutions in three-dimensional complex Swift-Hohenberg 

(CSH) equations. 

 

 

 

 
Fig. 3. The stable steady state solutions amplitude A , beam power P and width X with cubic-gain coefficients for different fourth-order 

diffractions and higher-order spectral filterings. 
 
 
4. Conclusions 
 
In conclusion, the (3+1)-dimensional CSH equation is 

treated for an asymmetric input, using numerical and 
analytical approach. The stable steady-state solutions are 
obtained analytically through exact parametric resolution. 
The results show that the quintic-loss parameter, 
cubic-gain coefficient, effective diffusion (viscosity) or 
angular spectral filtering have an important effect on 
steady state solutions. It is worthwhile to stress that even 
very asymmetric input pulses, which are far from stable 
spherically symmetric steady states, always self-organize 
into solitons for the same dissipative parameters. 
Therefore, bullets are very robust, resisting successive 
increase of amplitude in the process of evolution. These 
results suggest potential and practical applications such as 
routing light signals, all-optical data-processing schemes 
in optical communication devices, stable and robust 
dissipative light bullets in nonlinear dissipative media. 
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